

Greenwood maiden drill program yields bonanza gold grades

Second batch of assays delivers outstanding results at Greenwood, just 35km from flagship Aurora Tank discovery

Marmota Limited (ASX: MEU) ("Marmota")

Four weeks ago, the first batch of assay results (Holes 1 to 94) from Marmota's maiden drilling program at the Greenwood gold discovery returned **multiple outstanding high-grade gold intersections close to surface** [ASX: MEU 9 Sept 2025].

Today, Marmota is delighted to announce that the second batch of assays (Holes 95 to 146) has yielded **bonanza gold grades¹ and thick intervals**. These latest assays include the highest 4m intersection ever recorded at Greenwood, namely **4m @ 43 g/t gold** from 64m downhole² in Hole 25GWRC099 (as part of a wider intercept of **28m @ 6.5 g/t gold** from 44m downhole), exceeding the **4m @ 38 g/t gold** from 24m (part of **24m @ 12 g/t** from 20m) reported in the first batch four weeks ago. Marmota's maiden drilling program has now clearly delineated a nearly continuous high-grade discovery at Greenwood [see purple dots in [Figure 1](#)], along a mineralised zone that now extends over 900m in strike.

Best 4m intersections: maiden program

- 4m @ **43 g/t gold** (from 64m downhole) in Hole 25GWRC099
- 4m @ **38 g/t gold** (from 24m downhole) in Hole 25GWRC046*
- 4m @ **29 g/t gold** (from 24m downhole) in Hole 25GWRC094*
- 4m @ **25 g/t gold** (from 20m downhole) in Hole 25GWRC101
- 4m @ **14 g/t gold** (from 28m downhole) in Hole 25GWRC046*
- 4m @ **11 g/t gold** (from 20m downhole) in Hole 25GWRC105
- 4m @ **10 g/t gold** (from 20m downhole) in Hole 25GWRC005*
- 4m @ **10 g/t gold** (from 60m downhole) in Hole 25GWRC054*
- 4m @ **9 g/t gold** (from 56m downhole) in Hole 25GWRC118

Hole numbers marked * are from Batch 1 of assays announced on 9 Sept 2025. For full detail, see Table 1 (Table of Significant Intersections).

¹ Bonanza grade gold is usually defined as ore containing more than 31 grams of gold per ton of ore (*i.e.* more than one troy ounce of gold per ton).

² To convert downhole depth to actual depth from surface, multiply by ~0.87; *e.g.* 64m downhole is ~56m from surface; 20m downhole is ~17m from surface.

Best thick intersections: maiden program

• 28m @ 6.4 g/t gold	(from 44m downhole)	in Hole 25GWRC099
• 24m @ 12 g/t gold	(from 20m downhole)	in Hole 25GWRC046*
• 28m @ 5.6 g/t gold	(from 24m downhole)	in Hole 25GWRC094*
• 16m @ 6.5 g/t gold	(from 20m downhole)	in Hole 25GWRC101
• 16m @ 3.3 g/t gold	(from 20m downhole)	in Hole 25GWRC105
• 12m @ 4.1 g/t gold	(from 60m downhole)	in Hole 25GWRC054*
• 16m @ 2.8 g/t gold	(from 52m downhole)	in Hole 25GWRC118
• 28m @ 2.1 g/t gold	(from 20m downhole)	in Hole 25GWRC129
• 16m @ 2.3 g/t gold	(from 40m downhole)	in Hole 25GWRC130
• 12m @ 2.5 g/t gold	(from 20m downhole)	in Hole 25GWRC106
• 16m @ 2.0 g/t gold	(from 56m downhole)	in Hole 25GWRC095
• 12m @ 2.4 g/t gold	(from 72m downhole)	in Hole 25GWRC136
• 12m @ 2.3 g/t gold	(from 56m downhole)	in Hole 25GWRC131
• 20m @ 1.9 g/t gold	(from 20m downhole)	in Hole 25GWRC010*
• 12m @ 2.3 g/t gold	(from 68m downhole)	in Hole 25GWRC090*
• 16m @ 2.0 g/t gold	(from 20m downhole)	in Hole 25GWRC128
• 12m @ 3.0 g/t gold	(from 24m downhole)	in Hole 25GWRC112

Holes marked * are from Batch 1 of assays announced on 9 Sept 2025. For full detail, see Table 1 (Table of Significant Intersections).

12 out of the 17 best thick intersections listed above are from the second batch of assays just received. This is particularly notable given that the second batch accounts for only approximately one-third of the holes in the program.

Figure 1 provides a plan view of results to date (projection to surface).

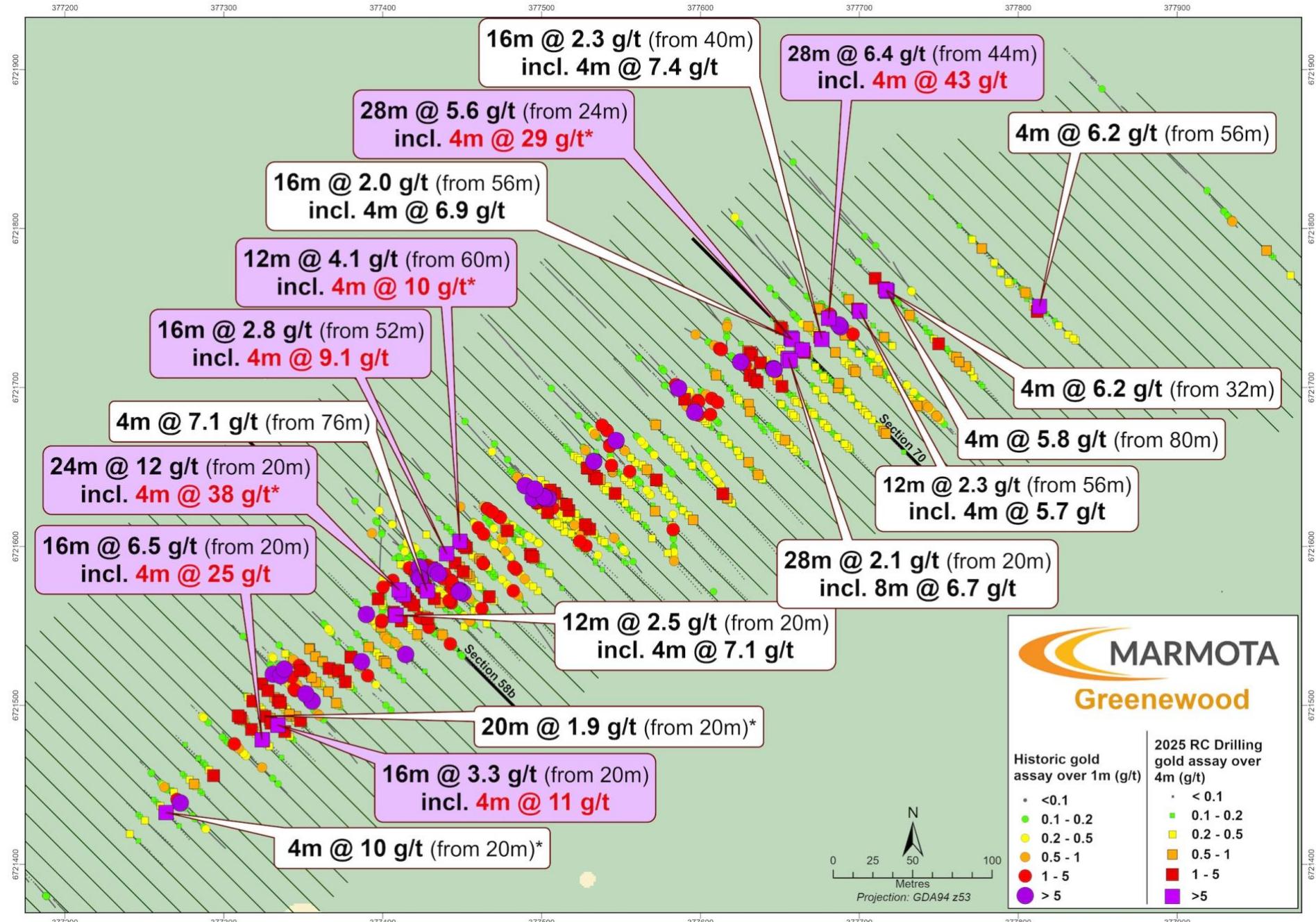

Figure 2 provides cross-sections through section 58b and section 70.

Figure 3 shows the location of Greenewood and Marmota's adjacent gold deposits, including the flagship Aurora Tank.

Figure 4 shows the Gawler gold belt and Marmota's gold deposits.

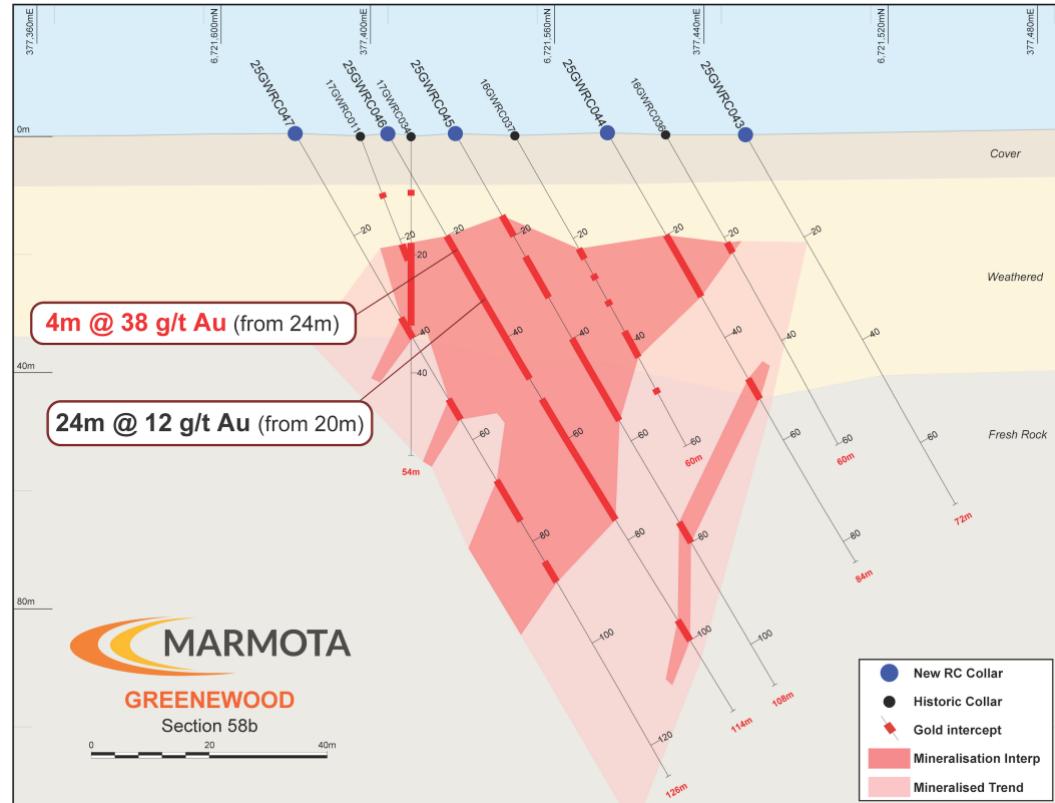
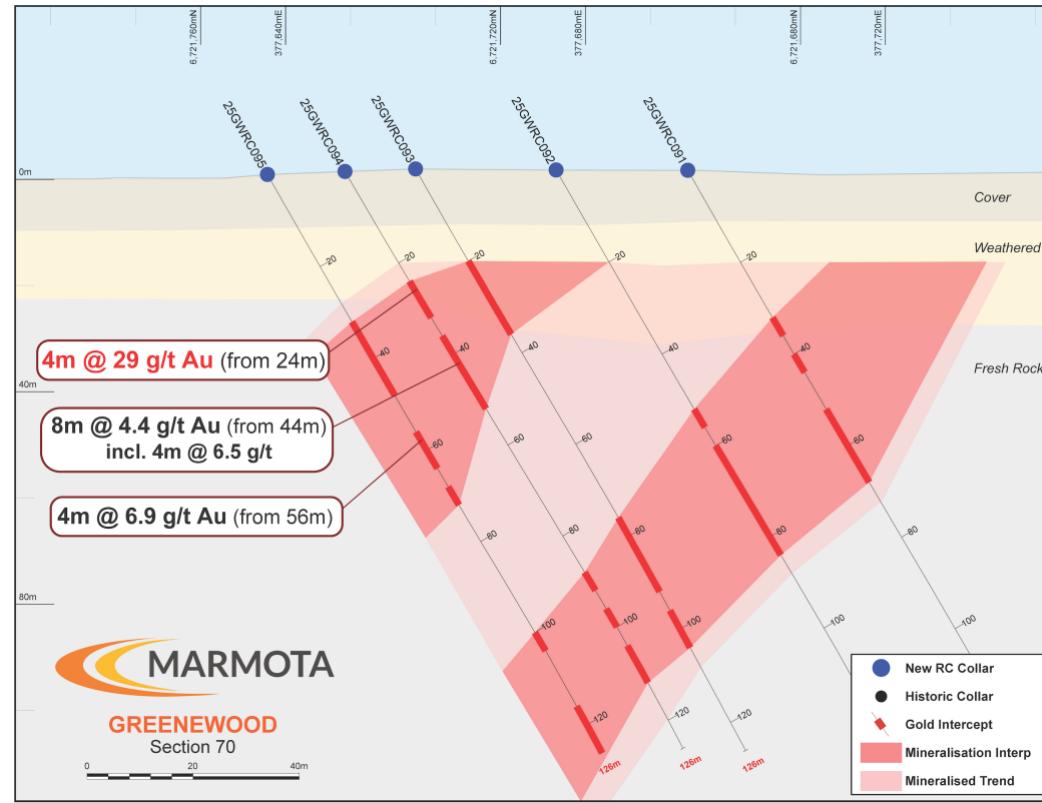

Figure 5 provides a collar diagram.

Table 1 provides a summary of significant intersections from the maiden program.



Results marked * are from Batch 1 of assays announced on 9 Sept 2025

Figure 1: Greenwood – Plan Overview Projection to surface

Cross-section 58b

Cross-section 70

Figure 2: Sectional views

Mineralisation at Greenwood features bonanza grade intersections, close to surface and at both ends of the deposit (cross-section 58b and 70). The recent results (see also Figure 1) show the continuity of the high grades across the deposit.

Table 1 Greenwood Maiden Marmota Program July/Aug 2025 drilling
Significant intercepts > 2 g/t Au (over 4m or more)
Results for maiden program

Hole ID	Easting	Northing	DIP	AZM	EOH	Depth From (m)	Depth To (m)	Intercept Width (m)	Au g/t
25GWRC099	377,657	6,721,767	-60	135	126	44	72	28m	6.4
<i>including</i>						64	68	4	43
25GWRC046 *	377,403	6,721,581	-60	135	114	20	44	24m	12
<i>including</i>						24	28	4	38
<i>including</i>						28	32	4	14
<i>including</i>						20	32	12	20
25GWRC094 *	377,648	6,721,740	-60	135	126	24	52	28m	5.6
<i>including</i>						24	28	4	29
<i>including</i>						44	52	8	4.4
25GWRC101	377,316	6,721,486	-60	135	72	20	36	16m	6.5
<i>including</i>						20	24	4	25
25GWRC105	377,326	6,721,495	-60	135	78	20	36	16m	3.3
<i>including</i>						20	24	4	11
25GWRC005 *	377,256	6,721,440	-60	135	54	20	24	4	10
25GWRC054 *	377,428	6,721,626	-60	135	126	60	72	12m	4.1
<i>including</i>						60	64	4	10
25GWRC118	377,420	6,721,615	-60	135	126	52	68	16m	2.8
<i>including</i>						56	60	4	9.1
<i>including</i>						52	64	12	3.6
25GWRC129	377,642	6,721,732	-60	135	126	20	48	28m	2.1
<i>including</i>						36	40	4	7.6
<i>including</i>						36	44	8	6.7

Hole ID	Easting	Northing	DIP	AZM	EOH	Depth From (m)	Depth To (m)	Intercept Width (m)	Au g/t
25GWRC130	377657	6,721,749	-60	135	126	40	56	16m	2.3
<i>including</i>						52	56	4	7.4
25GWRC106	377,400	6,721,564	-60	135	96	20	32	12m	2.5
<i>including</i>						20	24	4	7.1
25GWRC113	377,399	6,721,600	-60	135	126	76	80	4	7.1
25GWRC095	377,638	6,721,751	-60	135	126	56	72	16m	2.0
<i>including</i>						56	60	4	6.9
25GWRC135	377,705	6,721,773	-60	135	126	32	36	4	6.2
<i>and</i>						120	124	4	2.8
25GWRC139	377,793	6,721,772	-60	135	126	56	60	4	6.2
25GWRC136	377,688	6,721,790	-60	135	132	60	64	4	2.1
<i>and</i>						72	84	12m	2.4
<i>including</i>						80	84	4	5.8
25GWRC131	377,677	6,721,772	-60	135	126	56	68	12m	2.3
<i>including</i>						64	68	4	5.7
25GWRC102	377,309	6,721,492	-60	135	78	16	24	8	2.4
<i>including</i>						20	24	4	4.6
25GWRC010 *	377,317	6,721,502	-60	135	54	20	40	20m	1.9
<i>including</i>						24	28	4	4.1
25GWRC107	377,389	6,721,574	-60	135	108	20	24	4	2.7
<i>and</i>						60	64	4	4.0
25GWRC112	377,415	6,721,584	-60	135	126	24	36	12m	3.0
<i>including</i>						24	28	4	3.8
25GWRC073 *	377,541	6,721,673	-60	135	126	84	88	4	3.4
25GWRC128	377,623	6,721,715	-60	135	126	20	36	16m	2.0
<i>including</i>						20	24	4	3.4
<i>including</i>						28	32	4	3.1
25GWRC123	377,492	6,721,649	-60	135	126	44	52	8	2.0

Hole ID	Easting	Northing	DIP	AZM	EOH	Depth From (m)	Depth To (m)	Intercept Width (m)	Au g/t
<i>including</i>						44	48	4	3.2
25GWRC090 *	377,605	6,721,749	-60	135	126	68	80	12m	2.3
<i>including</i>						72	76	4	4.8
25GWRC103	377,301	6,721,501	-60	135	90	20	28	8	2.2
<i>including</i>						24	28	4	3.0
25GWRC108	377,380	6,721,583	-60	135	126	72	80	8	2.0
<i>including</i>						72	76	4	3.0
25GWRC018 *	377,346	6,721,544	-60	135	90	56	60	4	2.4
25GWRC068 *	377,505	6,721,673	-60	135	126	72	80	8	2.3
<i>including</i>						72	76	4	3.0
25GWRC033 *	377,314	6,721,523	-60	135	84	24	28	4	2.2
25GWRC124	377,481	6,721,660	-60	135	124	96	100	4	2.2
25GWRC111	377,425	6,721,575	-60	135	126	20	24	4	2.0
25GWRC056 *	377,487	6,721,601	-60	135	126	16	24	8	2.0

Due to angled holes: **True Depth from surface = $\sin(-60^\circ)$ (Depth in table)**, where $\sin(-60^\circ) \approx 0.87$ [Intersections over 5 g/t gold in red]

Results marked * are from the first batch of assays [ASX:MEU 9 Sept 2025]

Key Points

- Greenewood is located ~35km NW of Marmota's flagship Aurora Tank gold deposit and ~ 30km NE of the Challenger Gold Mine [see [Figure 3 and 4](#)].
- Greenewood is part of the Golden Moon JV. Marmota has 90% ownership (via its 100% owned subsidiary Half Moon Pty Ltd) [see [ASX:MEU 9 April 2024](#)]. Ministerial Consent was granted in June 2025 [[ASX:MEU 23 June 2025](#)].
- Greenewood has only had ~ 7,000 metres of RC drilling since its discovery, prior to Marmota's maiden program.
- Marmota's drilling represents the first drilling at Greenewood since 2018.
- Greenewood's proximity to Marmota's flagship Aurora Tank gold discovery (100% owned) creates obvious economies of scope and scale that are patently attractive [see [Figure 3 and 4](#)].
- Marmota's Aurora Tank gold discovery features outstanding gold intersections including multiple bonanza gold grades close to surface, superb recoveries in metallurgical testwork [[ASX:MEU 28 April 2025](#)], with excellent potential for low-cost, low capex open pit heap leach gold production

The Greenewood gold deposit is one of the “***Arc of Six***” gold deposits, along the flanks of the major ‘Y’-shaped gravity anomaly in the NW Gawler Craton. The “***Arc of Six***” gold deposits include, in geographic order (in a clockwise direction: [see Fig. 3 and 4](#)):

- The Challenger Mine (which produced over a million ounces of gold)
- Mainwood
- Greenewood
- Campfire Bore
- Golf Bore and
- Aurora Tank gold deposits.

Marmota owns all five of the unmined gold deposits (either 100% or 90%).

Greenwood gold: Maiden MEU program (July/Aug 2025)

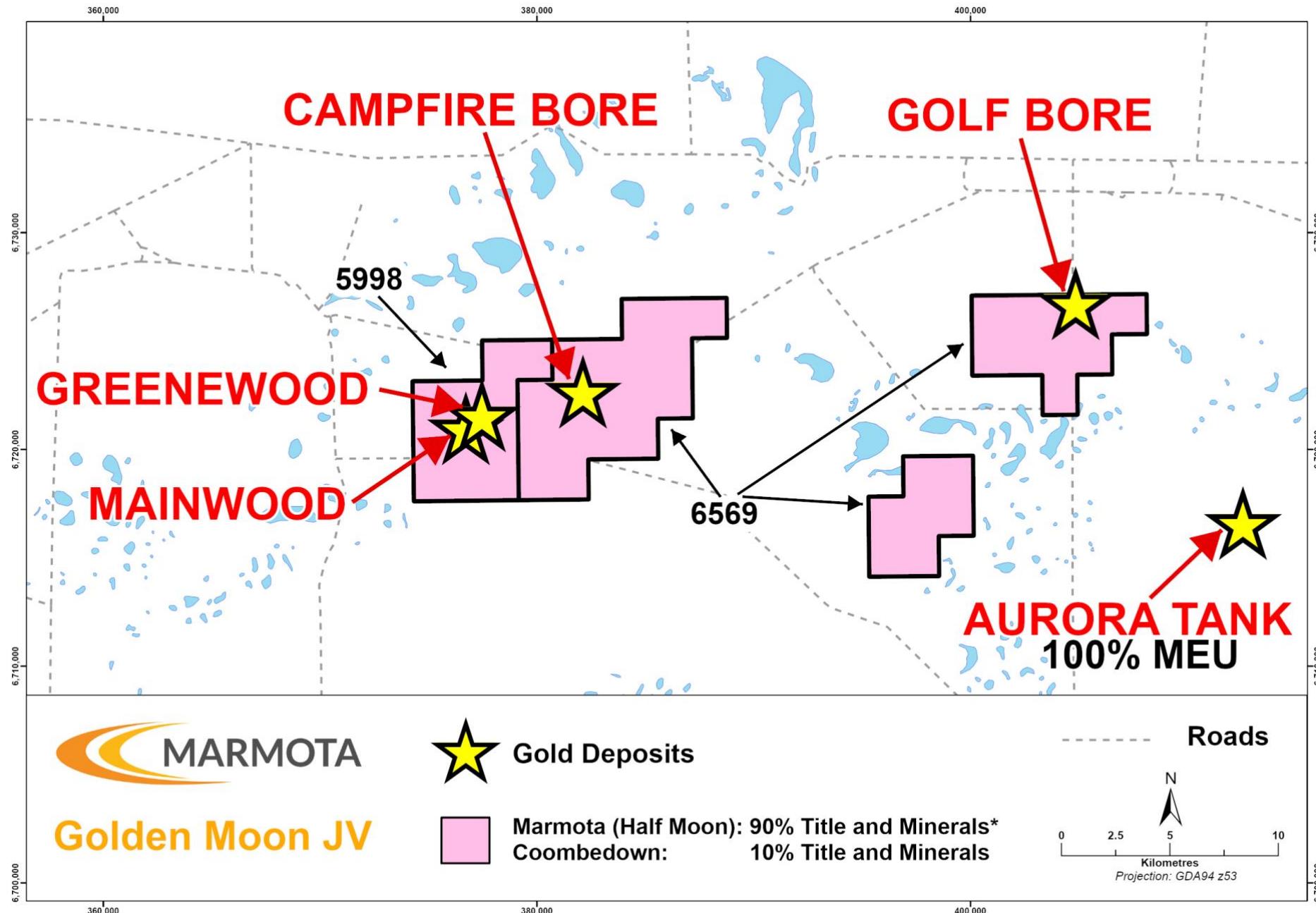
- RC Drill program: 146 holes
- Total RC drilling: 15,480m
- Average hole depth: ~ 106m
- Drilling completed: 28 Aug 2025 [ASX:MEU 28 Aug 2025]

New Paradigm for Growth

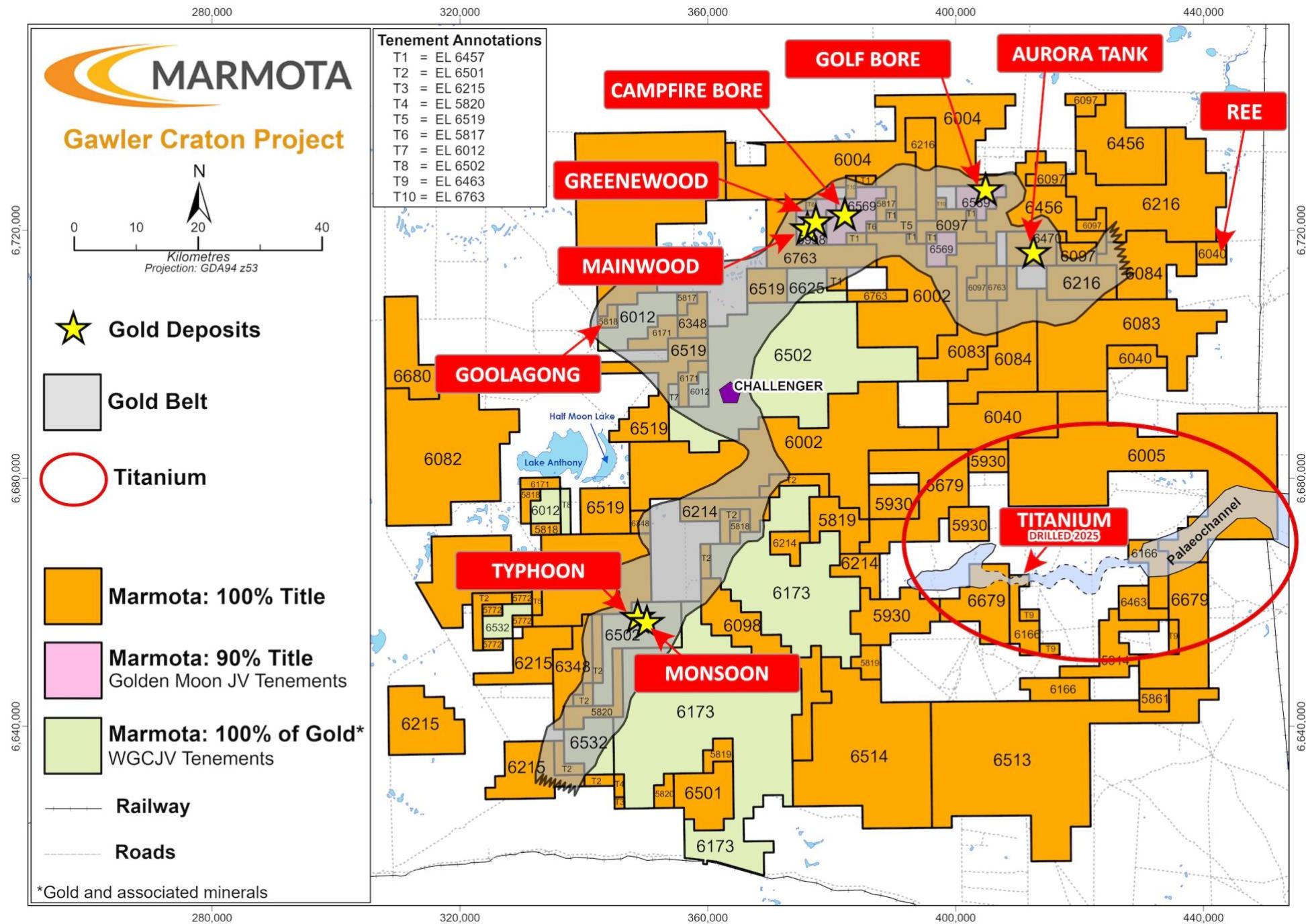
As a result of the program, Greenwood has grown to an approximately 900-metre long zone of near continuous mineralisation that was only subjected to a brief period of exploration by the previous owners. This was interrupted for non-geological reasons in 2018 — leaving an abundance of possibilities for increasing the dimensions of the mineralisation.

Prior to the recent drilling, Marmota carried out a review authored by Dr Kevin Wills [see ASX:MEU 17 June 2025] that identified an abundance of open sections, open intersections, untested mineralisation at shallow depth and possibilities for significant extensions.

Results from Marmota's maiden program have demonstrated that these concepts were valid, with results to date identifying numerous high-grade shoots, some with considerable length, *far exceeding the best results from the initial discovery*. This is a new paradigm for Greenwood. The second batch of results featuring bonanza grades and multiple thick intervals further validate the new model.


Marmota Chairman, Dr Colin Rose, said:

“ Greenewood is yielding some of the best gold results seen in the Gawler Craton since the discovery of the Challenger deposit. The results feature high grades, close to surface, with excellent continuity along strike (see the high-grade purple dots in [Figure 1](#)), and including exceptional thick high-grade intersections.


On behalf of all our shareholders, may I extend congratulations to our geology team who have done a superb job on Marmota’s maiden program at Greenewood: it is progressing beyond our best expectations, yielding bonanza grades and thick intersections close to surface, expanding the mineralisation in every direction and with the shape of the high-grade lodes already displaying form and structure. We now have highly prospective open gaps to fill in and extend out to grow the resource, and we can’t wait to finish the job.

Marmota now owns every unmined gold deposit within a 10,000 km² area of the Gawler Craton, along the Gawler Gold Belt. Our Gawler Gold Project is going from strength to strength, delivering bonanza grades at Aurora Tank [ASX:MEU [20 Jan 2025](#)], bonanza grades at Campfire Bore [ASX:MEU [29 Jan 2025](#)] and now bonanza grades at Greenewood, all complementing Aurora Tank brilliantly.

Three weeks ago, Marmota announced the appointment of highly-experienced mineral processing engineer Paul Richardson as Gawler Gold Project Manager [ASX:MEU [17 Sept 2025](#)] with the express purpose to take MEU Gawler Gold to production. Paul was previously Operations Manager for St Barbara Mines, General Manager for Mount Gibson Gold, and General Manager for Pacmin Mining at the Carosue Dam gold mine. Paul specialises in taking projects into production and is already making outstanding progress with Marmota. We look forward to providing shareholders with updates as Paul guides Gawler Gold to development.”

Figure 3: Location of Greenewood and Golden Moon JV deposits adjacent to Marmota's flagship Aurora Tank deposit

Follow Marmota on X at: [X.com/MarmotaLimited](https://x.com/MarmotaLimited)

For further information, contact:

Dr Colin Rose Executive Chairman
Marmota Ltd
Email: colin@marmota.com.au
Ph: (08) 8294 0899

www.marmota.com.au

For media enquiries, contact:

Paul Armstrong
Read Corporate
Email: info@readcorporate.com
Ph: (08) 9388 1474

Marmota Ltd Unit 6, 79-81 Brighton Rd, Glenelg SA 5045 ABN: 38 119 270 816 Ph: (08) 8294 0899

About Marmota Limited

Marmota Limited (ASX:MEU) is a South Australian mining exploration company focused on gold, titanium and uranium. Gold exploration is centred on the Company's gold discovery at Aurora Tank that is yielding outstanding intersections in the highly prospective and significantly underexplored Gawler Craton in the Woomera Prohibited Defence Area.

The Company's flagship uranium resource is at Junction Dam adjacent to the Honeymoon mine.

For more information, please visit: www.marmota.com.au

Competent Persons Statement

Information in this Release relating to Exploration Results is based on information compiled by Aaron Brown, who is a Member of The Australian Institute of Geoscientists and Executive Director of Exploration at Marmota. He has sufficient experience relevant to the styles of mineralisation and types of deposits under consideration and to the activities being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves." Mr Brown consents to the inclusion in this report of the matters based on this information in the form and context in which they appear.

Where results from previous announcements are quoted, Marmota confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcement and, in the case of estimates of Mineral Resources, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed.

For the purpose of ASX Listing Rule 15.5, the Board has authorised for this announcement to be released.

APPENDIX 1 JORC Code, 2012 Edition – Table 1 report

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	<ul style="list-style-type: none"> <i>Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i> <i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i> <i>Aspects of the determination of mineralisation that are Material to the Public Report.</i> <i>In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverized to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.</i> 	<ul style="list-style-type: none"> 2025 RC drilling at Greenewood was completed in August 2025 (ASX:MEU 28 Aug 2025) including 146 RC holes for 15,480 metres. 2025 Greenewood RC Drilling <ul style="list-style-type: none"> 4m composites were first collected using a 50mm PVC tube 'spear' to collect representative samples from bulk 1m sample bags. Composite samples were an average weight of 1.6kg which were pulverised to produce sub samples for lab assay using Fire Assay. For Fire Assay, a 50g pulverised samples was taken for fire assay and analysed by Atomic Absorption Spectroscopy (AAS) for Gold.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	2025 Greenewood RC drilling: <ul style="list-style-type: none"> Reverse Circulation ('RC') drilling Hole diameters are 146mm
Drill sample recovery	<ul style="list-style-type: none"> <i>Method of recording and assessing core and chip sample recoveries and results assessed.</i> <i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i> <i>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</i> 	2025 Greenewood RC Drilling: <ul style="list-style-type: none"> Drillholes and sample depths were recorded in digital format during drilling including description of lithology and sample intervals. Qualitative assessment of sample recovery and moisture content of drill samples was recorded. Sample recoveries were generally high, and moisture in samples minimal. In some instances, where ground water influx was high, wet/moist samples were collected.

Criteria	JORC Code explanation	Commentary
		<ul style="list-style-type: none"> The sample system cyclone was cleaned at the end of each hole and as required to minimise down-hole and cross-hole contamination. No relationship is known to exist between sample recovery and grade, in part due to in-ground variation in grade. A potential bias due to loss/gain of fine/coarse material is not suspected.
Logging	<ul style="list-style-type: none"> <i>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</i> <i>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</i> <i>The total length and percentage of the relevant intersections logged.</i> 	<p>2025 Greenewood RC Drilling:</p> <ul style="list-style-type: none"> All samples were geologically logged by Marmota geologists. The holes have not been geotechnically logged. Geological logging is qualitative. Chip trays containing 1m geological subsamples were collected. 100% of any reported intersections in this announcement have had geological logging completed.
Sub-sampling techniques and sample preparation	<ul style="list-style-type: none"> <i>If core, whether cut or sawn and whether quarter, half or all core taken.</i> <i>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</i> <i>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</i> <i>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</i> <i>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</i> <i>Whether sample sizes are appropriate to the grain size of the material being sampled.</i> 	<p>2025 Greenewood RC Drilling</p> <ul style="list-style-type: none"> 4m Composite samples averaging 1.6kg were collected for laboratory assay. Composite samples were collected with a 50mm tube by diagonally spearing individual samples within bags. Samples were then collected and dispatched to the lab. Samples are considered representative samples. Samples were collected after homogenizing of sample through drilling cyclone and unbiased spearing of samples in bags. Laboratory sample preparation includes drying and pulverizing of submitted sample to target of p80 at 75 µm. No samples checked for size after pulverizing failed to meet sizing target in the sample batches relevant to the report. Duplicate samples were introduced into the sample stream by the Company.
Quality of assay data and laboratory tests	<ul style="list-style-type: none"> <i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i> <i>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i> 	<p>2025 Greenewood RC Drilling – Initial 4m Composites:</p> <p>Samples were analysed in the following manner:</p> <ul style="list-style-type: none"> 4m Composites: <ul style="list-style-type: none"> ALS were used for analytical work of the 4m composite samples.

Criteria	JORC Code explanation	Commentary
	<ul style="list-style-type: none"> <i>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.</i> 	<ul style="list-style-type: none"> ALS Adelaide (Sample Preparation) and ALS Townsville (analytical) were used for analytical work of the 4m Composite samples. Lead Collection Fire Assay was used for Au (50g) and analysed using Atomic Absorption Spectroscopy (AAS). For all samples, the Company introduced QA/QC samples at a ratio of one QA/QC sample for every 30 drill samples. The laboratory introduced additional QA/QC samples (blanks, standards, checks) at a ratio of greater than 1 QA/QC sample for every 10 samples. Both the Company and laboratory QA/QC samples indicate acceptable levels of accuracy and precision have been established. Duplicates were introduced into the sample stream by the Company. The laboratory completed repeat assays on various samples. Standard samples were introduced into the sample stream by the Company, while the laboratory completed standard assays also.
Verification of sampling and assaying	<ul style="list-style-type: none"> <i>The verification of significant intersections by either independent or alternative company personnel.</i> <i>The use of twinned holes.</i> <i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i> <i>Discuss any adjustment to assay data.</i> 	<ul style="list-style-type: none"> An alternative company representative has checked the calculation of the quoted intersections. No twinned holes were drilled in the program. No adjustments have been made to the assay data.
Location of data points	<ul style="list-style-type: none"> <i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i> <i>Specification of the grid system used.</i> <i>Quality and adequacy of topographic control.</i> 	<ul style="list-style-type: none"> For Greenewood, drill hole coordinate information was collected using an RTX Differential GPS system with an autonomous accuracy of ± 2.5 centimetres utilising GDA 94 Zone 53. Area is approximately flat lying and Height datum is from the RTX differential GPS system (AUSGeoid09). Down hole surveys were undertaken at 30m intervals downhole and bottom of hole or as requested by the geologist.
Data spacing and distribution	<ul style="list-style-type: none"> <i>Data spacing for reporting of Exploration Results.</i> <i>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</i> <i>Whether sample compositing has been applied.</i> 	<p>2025 Greenewood RC Drilling:</p> <ul style="list-style-type: none"> Drill spacing are irregular for the exploration results provided in Table 1 (see information throughout release). All drillholes are drilled close to perpendicular to the dip direction of the gold mineralisation.

Criteria	JORC Code explanation	Commentary
<i>Orientation of data in relation to geological structure</i>	<ul style="list-style-type: none"> Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	<p>2025 Greenewood RC Drilling:</p> <ul style="list-style-type: none"> The orientation of sampling appears appropriate to the orientation of the ore body, though at this stage it is not confirmed if the angle shows the exact true width. No bias is known or apparent at this stage.
<i>Sample security</i>	<ul style="list-style-type: none"> The measures taken to ensure sample security. 	<ul style="list-style-type: none"> Marmota staff collected all samples and samples were transported to the laboratory in Adelaide.
<i>Audits or reviews</i>	<ul style="list-style-type: none"> The results of any audits or reviews of sampling techniques and data. 	<p>No audits have been conducted yet.</p>

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

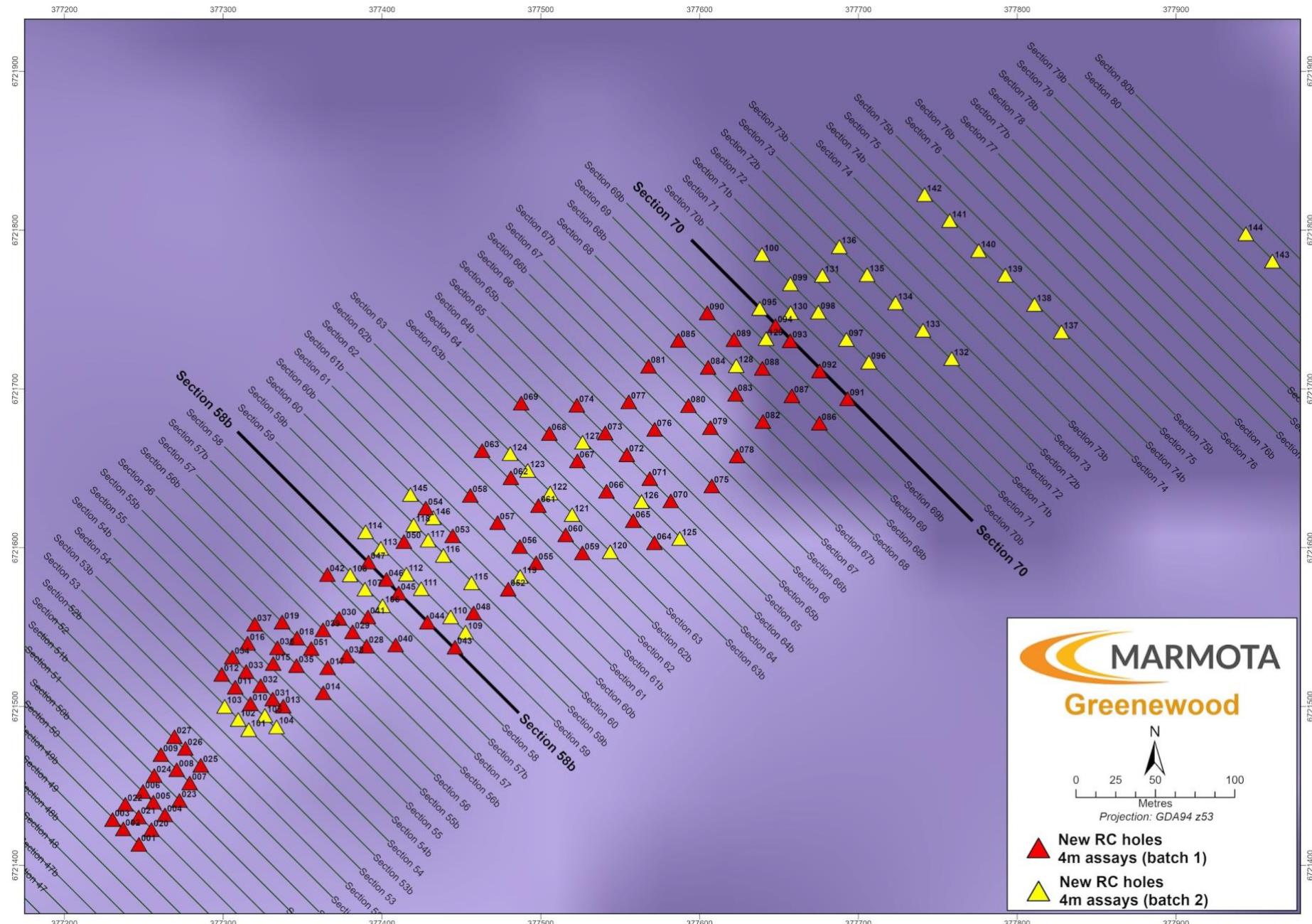
Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<ul style="list-style-type: none"> <i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i> <i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i> 	<ul style="list-style-type: none"> Greenwood Deposit (EL 5998) is part of the Golden Moon JV (GMJV), where Marmota Limited has 90% Title and Coombedown Resources has 10% Title. The EL is located approximately 100 km southwest of Coober Pedy in South Australia. There are no non-government royalties, historical sites or environmental issues. Exploration is conducted within lands of the Antakirinja Matu-Yankunytjatjara Native Title Determination Area. The tenements are in good standing.
Exploration done by other parties	<ul style="list-style-type: none"> <i>Acknowledgment and appraisal of exploration by other parties.</i> 	<ul style="list-style-type: none"> Exploration in the Greenwood (Sandstone Area) region has been carried out by a number of exploration companies previously including: <ul style="list-style-type: none"> Stockdale Prospecting Limited (1981-83) Roebuck Resources (1986-90) Norscom Pty Ltd (1993) Dominion Gold Operations Pty Ltd, Resolute Resources Pty Limited and Coombedown Resources Pty Ltd (1994-1999) Dominion Gold Operations Pty Ltd, Coombedown Resources Pty Ltd (1999-2006) Dominion Gold Operations Pty Ltd, Coombedown Resources Pty Ltd, Southern Gold Limited (2006-2012) joint venture agreement with Dominion Gold to explore the licences for gold. Challenger Gold Operations, Coombedown Resources Pty Ltd, Trafford Resources/Tyranna (2012-2018) joint venture with Challenger Gold Operations to explore the licence for gold.
Geology	<ul style="list-style-type: none"> <i>Deposit type, geological setting and style of mineralisation.</i> 	<ul style="list-style-type: none"> All drilling occurred within geology of the Christie Domain of the western Gawler Craton. The Christie Domain is largely underlain by late Archaean Mulgathang Complex which comprises meta-sedimentary successions interlayered with Banded Iron Formations (BIF), chert, carbonates and calc-silicates. Marmota is targeting Challenger-style Late Archaean gold whilst also considering occurrence of a variety of other mineralisation styles which may exist in the tenement area.
Drill hole Information	<ul style="list-style-type: none"> <i>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</i> <ul style="list-style-type: none"> <i>easting and northing of the drill hole collar</i> 	<ul style="list-style-type: none"> The required information on drill holes is incorporated into Appendix 2 of the ASX Release.

Criteria	JORC Code explanation	Commentary
	<ul style="list-style-type: none"> ○ <i>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</i> ○ <i>dip and azimuth of the hole</i> ○ <i>down hole length and interception depth</i> ○ <i>hole length.</i> ● <i>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</i> 	
Data aggregation methods	<ul style="list-style-type: none"> ● <i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</i> ● <i>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</i> ● <i>The assumptions used for any reporting of metal equivalent values should be clearly stated.</i> 	<p>2025 Greenewood RC Drilling – 4m Composites:</p> <ul style="list-style-type: none"> ● Any intersections are calculated by simple averaging of 4m samples. Where there is duplicate or repeat samples, an average Au grade is reported. ● Significant intercepts Au > 2 g/t in Table 1 have been rounded to nearest integer for Au ≥ 10 g/t. ● Where aggregated intercepts are presented in the report, they may include shorter lengths of high-grade mineralisation; these shorter lengths are also tabulated. ● No metal equivalents are reported
Relationship between mineralisation widths and intercept lengths	<ul style="list-style-type: none"> ● <i>These relationships are particularly important in the reporting of Exploration Results.</i> ● <i>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</i> ● <i>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').</i> 	<ul style="list-style-type: none"> ● Drill coverage is considered sufficient to establish approximate true widths due the current geological understanding of mineralisation dip and strike ● Mineralisation intersections are downhole lengths; exact true widths are unknown but are similar to the intersection lengths as the mineralised zones are approximately normal to hole inclinations.
Diagrams	<ul style="list-style-type: none"> ● <i>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.</i> 	<ul style="list-style-type: none"> ● See Figures within ASX release. ● A plan of the collar location of each drill hole has been provided within Figure 5 of this ASX announcement. A full list of the drillholes for the Greenewood July/Aug 2025 RC program are within Appendix 2. ● Plan views are provided in Figure 1. ● Sectional views are provided in Figure 2. ● Collar locations of the July/Aug 2025 drilling are provided in Figure 5.

Criteria	JORC Code explanation	Commentary
Balanced reporting	<ul style="list-style-type: none"> Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	<ul style="list-style-type: none"> A cut-off grade of 2 g/t (2,000 ppb) gold was applied in reviewing highlight initial assay results and deemed appropriate at this stage in reporting exploration results. Reporting is considered balanced.
Other substantive exploration data	<ul style="list-style-type: none"> Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	<ul style="list-style-type: none"> Marmota ASX Releases related to EL 5998 and Greenewood include: 31 Jul 2020, 17 Nov 2020, 30 Nov 2020, 1 Jun 2021, 15 Nov 2021, 13 Jul 2023, 1 Sep 2023, 9 Apr 2025, 15 May 2025, 17 Jun 2025, 23 June 2025 Marmota ASX Releases related to Greenewood 2025 RC Drilling: 2 July 2025, 7 July 2025, 23 July 2025, 28 Aug 2025, 9 Sept 2025.
Further work	<ul style="list-style-type: none"> The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	<ul style="list-style-type: none"> Marmota will collect 1m samples for further detailed geochemistry. Marmota is currently reviewing results received to date and preparing additional work programs.

APPENDIX 2 Drillhole collar summary: July/August 2025 RC drilling

Batch 1: assays announced on 9 Sept 2025


Hole ID	Drill Type	Easting (MGA94 z53)	Northing (MGA94 z53)	RL	Dip	Azimuth	EOH Depth
25GWRC001	RC	377,247	6,721,414	164	-60	135	42
25GWRC002	RC	377,237	6,721,424	163	-60	135	48
25GWRC003	RC	377,230	6,721,429	163	-60	135	66
25GWRC004	RC	377,263	6,721,432	162	-60	135	48
25GWRC005	RC	377,256	6,721,440	162	-60	135	54
25GWRC006	RC	377,249	6,721,447	162	-60	135	66
25GWRC007	RC	377,279	6,721,452	162	-60	135	54
25GWRC008	RC	377,271	6,721,461	162	-60	135	60
25GWRC009	RC	377,261	6,721,470	162	-60	135	72
25GWRC010	RC	377,317	6,721,502	161	-60	135	54
25GWRC011	RC	377,308	6,721,513	161	-60	135	68
25GWRC012	RC	377,299	6,721,521	161	-60	135	84
25GWRC013	RC	377,338	6,721,501	161	-60	135	54
25GWRC014	RC	377,363	6,721,509	161	-60	135	36
25GWRC015	RC	377,331	6,721,528	161	-60	135	72
25GWRC016	RC	377,315	6,721,540	161	-60	135	90
25GWRC017	RC	377,366	6,721,525	161	-60	135	60
25GWRC018	RC	377,346	6,721,544	161	-60	135	90
25GWRC019	RC	377,337	6,721,554	161	-60	135	108
25GWRC020	RC	377,255	6,721,423	163	-60	135	54
25GWRC021	RC	377,247	6,721,431	163	-60	135	60
25GWRC022	RC	377,238	6,721,439	163	-60	135	72
25GWRC023	RC	377,272	6,721,441	162	-60	135	54
25GWRC024	RC	377,257	6,721,457	162	-60	135	54
25GWRC025	RC	377,286	6,721,464	162	-60	135	48
25GWRC026	RC	377,276	6,721,474	162	-60	135	60
25GWRC027	RC	377,269	6,721,482	162	-60	135	72
25GWRC028	RC	377,390	6,721,539	162	-60	135	72
25GWRC029	RC	377,381	6,721,548	162	-60	135	84
25GWRC030	RC	377,373	6,721,556	162	-60	135	96
25GWRC031	RC	377,331	6,721,505	161	-60	135	66
25GWRC032	RC	377,324	6,721,514	161	-60	135	78
25GWRC033	RC	377,314	6,721,523	161	-60	135	84
25GWRC034	RC	377,306	6,721,532	161	-60	135	102
25GWRC035	RC	377,346	6,721,526	161	-60	135	60
25GWRC036	RC	377,334	6,721,538	161	-60	135	84
25GWRC037	RC	377,320	6,721,552	161	-60	135	108
25GWRC038	RC	377,378	6,721,532	161	-60	135	54
25GWRC039	RC	377,363	6,721,549	162	-60	135	96
25GWRC040	RC	377,409	6,721,539	161	-60	135	60
25GWRC041	RC	377,391	6,721,557	161	-60	135	90
25GWRC042	RC	377,366	6,721,584	161	-60	135	114
25GWRC043	RC	377,446	6,721,538	160	-60	135	72
25GWRC044	RC	377,429	6,721,554	161	-60	135	84
25GWRC045	RC	377,410	6,721,572	160	-60	135	108

25GWRC046	RC	377,403	6,721,581	160	-60	135	114
25GWRC047	RC	377,391	6,721,592	160	-60	135	126
25GWRC048	RC	377,458	6,721,560	161	-60	135	84
25GWRC049	RC	377,448	6,721,569	162	-60	135	102
25GWRC050	RC	377,414	6,721,604	160	-60	135	126
25GWRC051	RC	377,355	6,721,537	161	-60	135	72
25GWRC052	RC	377,479	6,721,574	160	-60	135	126
25GWRC053	RC	377,445	6,721,608	160	-60	135	126
25GWRC054	RC	377,428	6,721,626	160	-60	135	126
25GWRC055	RC	377,497	6,721,591	161	-60	135	126
25GWRC056	RC	377,487	6,721,601	160	-60	135	126
25GWRC057	RC	377,473	6,721,616	160	-60	135	126
25GWRC058	RC	377,456	6,721,634	160	-60	135	126
25GWRC059	RC	377,526	6,721,597	160	-60	135	126
25GWRC060	RC	377,516	6,721,609	160	-60	135	126
25GWRC061	RC	377,499	6,721,627	160	-60	135	126
25GWRC062	RC	377,481	6,721,645	160	-60	135	126
25GWRC063	RC	377,463	6,721,662	160	-60	135	126
25GWRC064	RC	377,572	6,721,604	160	-60	135	126
25GWRC065	RC	377,558	6,721,618	160	-60	135	126
25GWRC066	RC	377,541	6,721,636	160	-60	135	126
25GWRC067	RC	377,523	6,721,655	160	-60	135	126
25GWRC068	RC	377,505	6,721,673	160	-60	135	126
25GWRC069	RC	377,488	6,721,692	160	-60	135	126
25GWRC070	RC	377,582	6,721,630	160	-60	135	126
25GWRC071	RC	377,569	6,721,644	160	-60	135	126
25GWRC072	RC	377,554	6,721,659	160	-60	135	126
25GWRC073	RC	377,541	6,721,673	160	-60	135	126
25GWRC074	RC	377,523	6,721,690	160	-60	135	126
25GWRC075	RC	377,608	6,721,640	163	-60	135	126
25GWRC076	RC	377,572	6,721,675	161	-60	135	126
25GWRC077	RC	377,555	6,721,692	160	-60	135	126
25GWRC078	RC	377,624	6,721,658	161	-60	135	126
25GWRC079	RC	377,607	6,721,676	161	-60	135	126
25GWRC080	RC	377,593	6,721,690	161	-60	135	126
25GWRC081	RC	377,568	6,721,715	161	-60	135	126
25GWRC082	RC	377,640	6,721,680	162	-60	135	126
25GWRC083	RC	377,623	6,721,697	161	-60	135	126
25GWRC084	RC	377,605	6,721,714	161	-60	135	126
25GWRC085	RC	377,587	6,721,731	162	-60	135	126
25GWRC086	RC	377,675	6,721,679	161	-60	135	126
25GWRC087	RC	377,658	6,721,696	161	-60	135	126
25GWRC088	RC	377,640	6,721,714	161	-60	135	126
25GWRC089	RC	377,622	6,721,732	161	-60	135	126
25GWRC090	RC	377,605	6,721,749	161	-60	135	126
25GWRC091	RC	377,693	6,721,694	162	-60	135	126
25GWRC092	RC	377,676	6,721,712	162	-60	135	126
25GWRC093	RC	377,657	6,721,731	162	-60	135	126
25GWRC094	RC	377,648	6,721,740	161	-60	135	126

BATCH 2: assays just received

Hole ID	Drill Type	Easting (MGA94 z53)	Northing (MGA94 z53)	RL	Dip	Azimuth	EOH Depth
25GWRC095	RC	377.638	6.721.751	161	-60	135	126
25GWRC096	RC	377.707	6.721.717	162	-60	135	126
25GWRC097	RC	377.692	6.721.732	162	-60	135	126
25GWRC098	RC	377.675	6.721.749	162	-60	135	126
25GWRC099	RC	377.657	6.721.767	162	-60	135	126
25GWRC100	RC	377.639	6.721.785	162	-60	135	126
25GWRC101	RC	377.316	6.721.486	162	-60	135	72
25GWRC102	RC	377.309	6.721.492	162	-60	135	78
25GWRC103	RC	377.301	6.721.501	161	-60	135	90
25GWRC104	RC	377.334	6.721.488	161	-60	135	66
25GWRC105	RC	377.326	6.721.495	161	-60	135	78
25GWRC106	RC	377.400	6.721.564	161	-60	135	96
25GWRC107	RC	377.389	6.721.574	161	-60	135	108
25GWRC108	RC	377.380	6.721.583	161	-60	135	126
25GWRC109	RC	377.453	6.721.547	161	-60	135	78
25GWRC110	RC	377.443	6.721.557	161	-60	135	114
25GWRC111	RC	377.425	6.721.575	160	-60	135	126
25GWRC112	RC	377.415	6.721.584	160	-60	135	126
25GWRC113	RC	377.399	6.721.600	160	-60	135	126
25GWRC114	RC	377.390	6.721.611	160	-60	135	126
25GWRC115	RC	377.456	6.721.578	160	-60	135	126
25GWRC116	RC	377.439	6.721.596	160	-60	135	126
25GWRC117	RC	377.429	6.721.605	160	-60	135	126
25GWRC118	RC	377.420	6.721.615	160	-60	135	126
25GWRC119	RC	377.487	6.721.583	160	-60	135	126
25GWRC120	RC	377.544	6.721.598	160	-60	135	126
25GWRC121	RC	377.520	6.721.621	160	-60	135	126
25GWRC122	RC	377.506	6.721.635	160	-60	135	126
25GWRC123	RC	377.492	6.721.649	160	-60	135	126
25GWRC124	RC	377.481	6.721.660	160	-60	135	124
25GWRC125	RC	377.587	6.721.606	160	-60	135	126
25GWRC126	RC	377.563	6.721.630	160	-60	135	126
25GWRC127	RC	377.526	6.721.667	160	-60	135	126
25GWRC128	RC	377.623	6.721.715	162	-60	135	126
25GWRC129	RC	377.642	6.721.732	161	-60	135	126
25GWRC130	RC	377.657	6.721.749	161	-60	135	126
25GWRC131	RC	377.677	6.721.772	162	-60	135	126
25GWRC132	RC	377.759	6.721.720	162	-60	135	126
25GWRC133	RC	377.741	6.721.738	161	-60	135	126
25GWRC134	RC	377.723	6.721.755	160	-60	135	126
25GWRC135	RC	377.705	6.721.773	161	-60	135	126
25GWRC136	RC	377.688	6.721.790	160	-60	135	132
25GWRC137	RC	377.828	6.721.737	162	-60	135	126
25GWRC138	RC	377.811	6.721.754	161	-60	135	126
25GWRC139	RC	377.793	6.721.772	161	-60	135	126
25GWRC140	RC	377.776	6.721.788	161	-60	135	132
25GWRC141	RC	377.757	6.721.807	161	-60	135	162
25GWRC142	RC	377.742	6.721.823	161	-60	135	162
25GWRC143	RC	377.961	6.721.781	161	-60	135	126
25GWRC144	RC	377.944	6.721.798	161	-60	135	126
25GWRC145	RC	377.418	6.721.634	160	-60	135	108
25GWRC146	RC	377.432	6.721.619	160	-60	135	90

For collar diagram, please see Figure 5 below.

Figure 5: Greenwood Drillhole Collars

▲ July/Aug 2025: 4m Composite Assays: Batch 1 (ASX:MEU 9 Sept 2025)

▲ July/Aug 2025: 4m Composite Assays: Batch 2 just received